SASPI

SOCIETY OF ANTIMICROBIAL STEWARDSHIP PRACTICES IN INDIA

WELCOME TO OUR

Newsletter

DEC 2024

In collaboration with AIIMS BATHINDA

- Filled with information
- critical analysis
- New strategies and lot more....

Copyright@https://saspi.in/newsletter/

NEWSLETTER

DECEMBER 2024

SASPI

SOCIETY OF ANTIMICROBIAL STEWARDSHIP PRACTICES IN INDIA

&

ALL INDIA INSTITUTE OF MEDICAL SCIENCES (AIIMS) BATHINDA

PRESIDENTS NOTE

Dear Members & Readers, Greetings from the President's Desk!

As we welcome the New Year 2025, I extend my heartfelt gratitude to all members, seniors, and past presidents for entrusting me with the honor of leading SASPI.

Antimicrobial resistance (AMR), often termed the "Silent Pandemic," threatens modern medicine, with 39 million projected deaths from drug-resistant pathogens over the next 25 years. Addressing this requires moving beyond siloed efforts. Integrative Stewardship combining Antimicrobial Stewardship, Diagnostic Stewardship, and Infection Control—offers a patient-centered, holistic approach.

To combat AMR and healthcare-associated infections, collaboration among policymakers, healthcare workers, and communities is crucial. Together, we can drive sustainable healthcare improvements and tackle this critical global challenge.

SASPI collaborates with clinicians, diagnosticians, and healthcare workers to promote Integrative Stewardship, emphasizing infection control, diagnostics, and therapies to combat antimicrobial resistance (AMR). During "World AMR Awareness Week" (18–24 Nov), members embraced the theme "Educate. Advocate. Act Now." In December 2024, SASPI will host its 5th educational webinar. Recently, 42 practice statements were released to standardize Integrative Stewardship in tertiary care hospitals across India.

JASPI, SASPI's journal, has added "Journal Autopsy" and "Stewardship Pearls" sections, offering key insights into stewardship practices. This model aligns with the vision of Viksit Bharat by fostering robust healthcare systems, reducing illness, and mitigating resistance through collaboration and innovation.

Best Regards President, SASPI

NEWSLETTER

Here is What we have !

- Antimicrobial Stewardship Pearls for optimized use of antibiotics
- Diagnostic Stewardship
- Laboratory -based algorithm to determine blood cultre contamination
- Stewardship for Urinary Tract Infections
- Cascade Reporting for Antimicrobbial susceptibility Testing
- IPC What metaanalysis says
- What's New?
- Antibiotics summary: AWARE and more
- WAAW 2024 activities by A11MS Bathinda- A snapshot

INVITED EDITOR AIIMS BATHINDA

Dr. Rachna Rohilla Assistant Professor Pharmacology All India Institute of Medical Sciences Bathinda, Punjab, India

• • • • • • • • • • • • • • •

Content edits, formatting & Designing Dr. Samiksha Bhattacharjee AssistantProfessor Pharmacology AIIMS Deoghar & Joint Director Public Health Committee, SASPI

ANTIMICROBIAL STEWARDSHIP PEARLS FOR OPTIMIZED USE OF ANTIBIOTICS "START SMART, NEXT FOCUS"

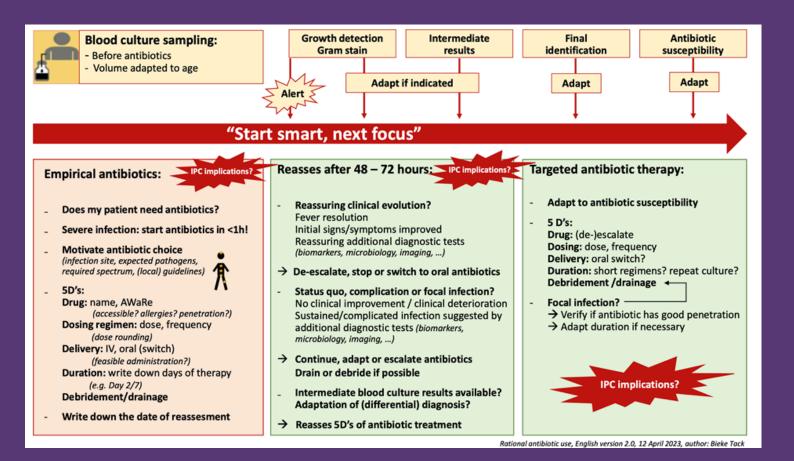
Compiled by: Dr. Rachna Rohilla, Assistant Professor, Department of Pharmacology, AIIMS Bathinda

Drug: Selecting empirical antibiotic based on guidelines including local epidemiological patterns and antibiogram. Keeping in view the co-morbid conditions and tissue penetration is equally important.

Dose: Dosing recommendations based on AWaRe antibiotic book, keeping in view the working mechanism of antibiotic (PK/PD) for selecting duration and frequency of administration. EUCAST suggests pathogen specific dosing for certain pathogens based on breakpoints and MDR organisms.

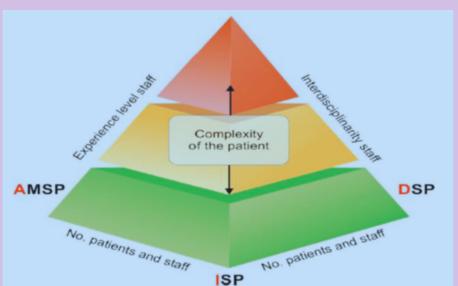
Delivery: The route of administration is sometimes important consideration especially for ocular/CNS conditions where the penetration remains a concern e.g Intraventricular administration of Amphotericin B for fungal CNS infections or Colistin administration for A.baumannii meningitis.

Duration: A shorter treatment can be considered based for certain conditions like uncomplicated UTI, pneumonia, S.aureus bacteremia, typhoid fever after risk-benefit assessment. In addition, IV to Oral switch should be considered once patient improves.


Debridement/Drainage: Source control where ever possible is must in addition to antibiotics.

De-escalation: De-escalation from broad spectrum to narrow spectrum antibiotic based on culture susceptibility report.

Antibiotics should not compensate for lack of hygiene/infection control


Diagnostic Stewardship

Dr. Bhawna Sharma and Dr. Jai Ranjan Assistant Professor, Department of Microbiology, AIIMS Bathinda

According to WHO Diagnostic stewardship is defined in the GLASS manual as: "coordinated guidance and interventions to improve appropriate use of microbiological diagnostics to guide therapeutic decisions."

AID INTEGRATED STEWARDSHIP MODEL

Diagnostic stewardship involving multidisciplinary teams across the diagnostic pathway as shown below:

Pre-analytical

PHYSICIAN

✓ Proper History and examination
 ✓ Optimum sample source
 ✓ Adequate test
 ✓ Provide adequate clinical data

NURSE/STAFF

✓ Proper sample collection

✓ Adequate sample labelling and transport

MICROBIOLOGIST

✓ Recommend diagnostic test
 ✓ Assess sample quality
 Counsel about right sample, right test, right time

Analytical

PHYSICIAN

 Provide real time clinical feedback to guide any dditional test required

LABORATORY STAFF

 ✓ Appropriate sample processing and avoid contamination
 ✓ Sample Preservation

MICROBIOLOGIST

 Determine sample adequacy for testing
 Recommend additional diagnostic tools as per clinical data provided

✓ Reject sample as per rejection criterias`

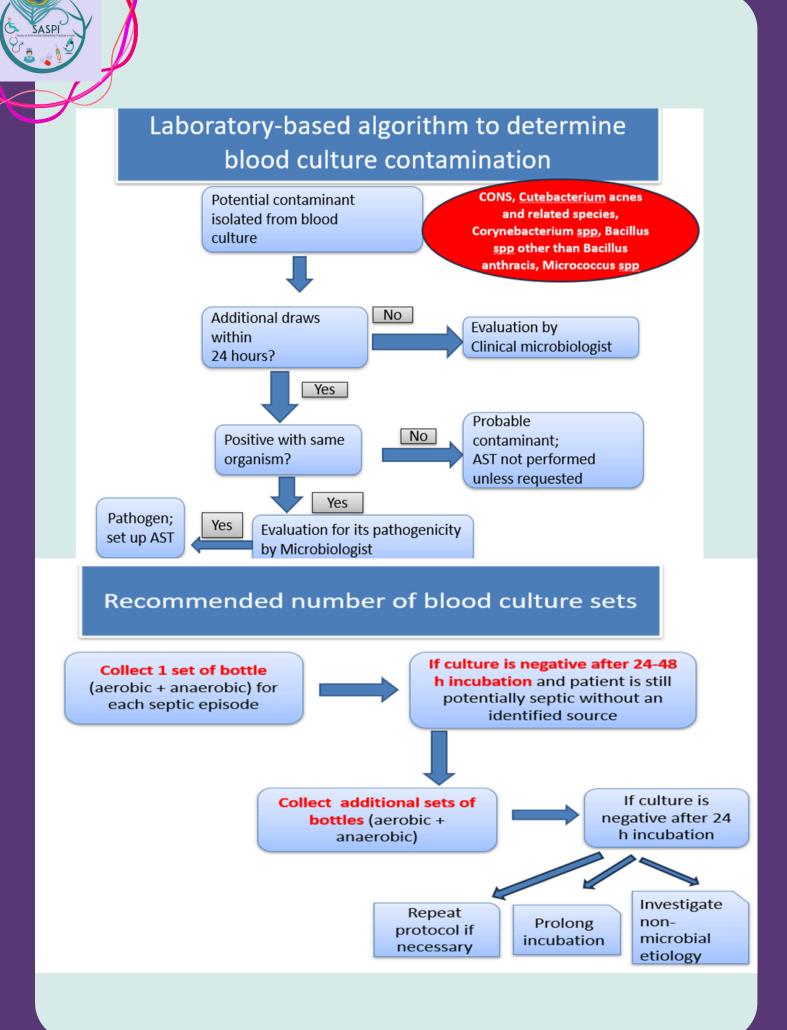
Post Analytical

MICROBIOLOGIST

 Mention colonization on the reports
 Add comments regarding sample appropriateness
 Cascade reporting for antimicrobial susceptibility

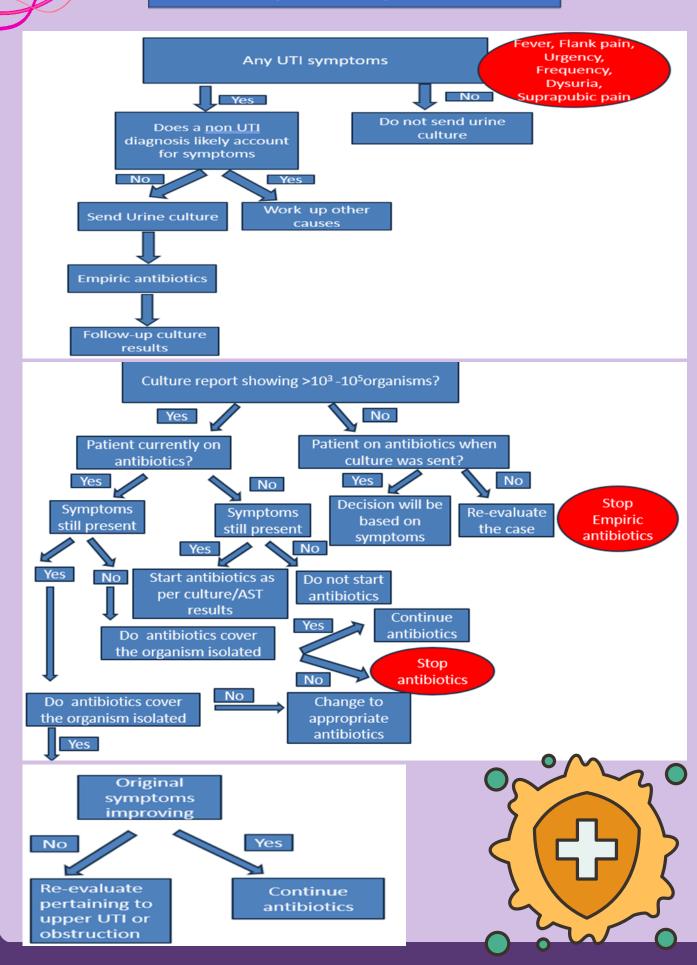
crical call alerts

 \checkmark Recommend additional tests if required


LABORATORY STAFF

✓ Timely reporting
 ✓ Integratinh online reporting system

PHYSICIAN


 Collaborate with microbiologist to ensure proper analysis of results
 Correalate the results with clinical data Key Role in this phase

Always consult for any query

Stewardship for Urinary tract infections

SPI

It is a strategy for reporting antimicrobial susceptibility where secondary agents are reported only if the organism is resistant to primary, narrow-spectrum agents in the drug class.

Tier System: CLSI guidelines prioritize Tier 1 drugs, with Tier 2–4 used if resistance arises. Tier 1 is routinely tested; Tier 2–3 are reported via cascade; Tier 4 is reported on request or by cascade.

Example: Table taken from CLSI 2024 M100 34thedition

Table 1A-1. Enterobacterales (excluding Salmonella/Shigella)^a

Tier 1: Antimicrobial agents that are appropriate for routine, primary testing and reporting	Tier 2: Antimicrobial agents that are appropriate for routine, primary testing but may be reported following cascade reporting rules established at each institution	Tier 3: Antimicrobial agents that are appropriate for routine, primary testing in institutions that serve patients at high risk for MDROs but should only be reported following cascade reporting rules established at each institution	Tier 4: Antimicrobial agents that may warrant testing and reporting by clinician request if antimicrobial agents in other tiers are not optimal because of various factors
Ampicillin			
Cefazolin	Cefuroxime		
Cefotaxime or ceftriaxone ^b	Cefepime		
	Ertapenem	Cefiderocol	
	Imipenem	Ceftazidime-avibactam	
	Meropenem	Imipenem-relebactam	
		Meropenem-vaborbactam	
Amoxicillin-clavulanate			
Ampicillin-sulbactam			
Piperacillin-tazobactam			
Gentamicin	Tobramycin	Plazomicin	
	Amikacin		
Ciprofloxacin			
Levofloxacin			
Trimethoprim-sulfamethoxazole			
	Cefotetan		
	Cefoxitin		
	Tetracyclined		
			Aztreonam
			Ceftaroline ^b
			Ceftazidime ^b
			Ceftolozane-tazobactam
Urine Only			
Cefazolin (surrogate for uncomplicated UTI) ^e			
Nitrofurantoin	1		
	1	Fosfomycin ^f (Escherichia coli)	1

Use of comments in clinical microbiology reporting: Need of an hour

Ø Comments related to specimen collection Ø Comments if clinical data is missing in requisition form

Ø Comments related to intrinsic resistance Ø Comment related to pathogenicity of any organism and its clinical correlation

Ø Comments related to AST Ø Comments related to specific organismantibiotic interaction

Ø Infection control advice Ø Follow up report

A short summary of meta-analysis studies on impact of infection control measures in terms of antimicrobial resistance

ASPI

Dr. Sivanantham Krishnamoorthi, Associate Professor, Department of Microbiology, All India Institute of Medical Sciences (AIIMS) Bathinda, Punjab, India

Study	Population/ Patinet/ Problem	Intervention/ Exposure	Comparis on	AMR related Outcome measure	Finding
Hammond NE et al., 2022	ICU patients on mechanical ventilation	Selective Decontamination of the Digestive Tract	Standard care or placebo	Incidenc e of positive cultures of antimicro bial- resistanc e organism	Available data regarding the incidence of positive cultures of antimicrobial-resistant organisms were notamenable to pooling and were of very low certainty
Wong VWY et al., 2022	Long-term care facilities for older people	IPC interventions: (i) Horizontal interventions: administrative engagement, barrier precautions, education, environmental cleaning, hand hygiene, performance improvement, and source control; and (ii) vertical intervention: active surveillance plus decolonization	Usual care (Before- after studies; interrupt ed time- series studies)	MDRO Colonisat ion and infection s	Overall low quality of evidence. Meta-analysis did not demonstrate a significant decrease in MRSA colonization following IPC interventions. While the pooled estimates varied by intervention types, none consistently produced significant results. Vertical interventions may reduce MRSA colonization but horizontal interventions had no effects. Some smaller studies with low methodological quality produced exaggerated positive interven-tion effect estimates. IPC interventions may reduce VRE and GNB colonization while they had an inconsistent impact on MDRO infections. Administrative engagement is a core component in all successful IPC programmes to curtail MDRO colonization in LTCFs
Alexandre R Marra et al., 2018	Acute care non- outbreak setting	discontinuation of contact precautions for multidrug- resistant organisms	Infection Rate of MDROs	MDRO infection rate	Discontinuation of CPs for MRSA and VRE has not been associated with increased infection rates.

Study	Populatio n/ Patinet/ Problem	Intervention/ Exposure	Compa rison	AMR related Outcome measure	Finding
N L Plantinga et al., 2017	Medical and surgical ICUs with low level of antibiotic resistance	Selective digestive decontamination (SDD) and selective oropharyngeal decontamination (SOD)	Standar d care or placebo	survival in ICUs of lo level antibiotic resistance	SDD and SOD improved hospital and ICU survival compared to standard care in both patient populations, with SDD being more effective than SOD.
Nattawat Teerawatta napong et al., 2017	Adult patiens admitted in ICUs	Antimicrobial stewardship program (ASP), environmental cleaning (ENV), decolonization methods (DCL), or source control (SCT), simultaneously.	Standar d care (STD)	MDR-GNB acquisition, colonization, and infection	4-component strategy composed of STD, ASP, ENV, and SCT was the most effective intervention (rate ratio [RR], 0.05 [95% confidence interval {CI}, .0138]) to prevent MDR-GNB acquisition.
Hua-Ping Huang et al., 2016	Adult ICUs	Chlorhexidine gluconate (CHG) bathing	Soap and water or other routine care	Acquisition of MRSA and VRE	A significant reduction in the risks of MRSA acquisition in the CHG bathing group (RR, 0.78; 95% CI, 0.68 to 0.91; p = 0.001) with a low heterogeneity (I2 = 12%; p = 0.34); Also, decreased VRE acquisition (RR, 0.56; 95% CI, 0.31 to 0.99; p = 0.05) and there was a moderate heterogeneity (I2 = 67%)
Giulia De Angelis et al., 2014	Hospitalise d patients	IPC measures	Various compon ents of IPC measure s	Spread of VRE	Overall study quality was low; Implementation of hand hygiene was associated with a 47% decrease in the VRE acquisition rate (pooled RR 0.53, 95% CI 0.39-0.73, I(2) 26%) while contact precautions did not significantly reduce the VRE acquisition rate (pooled RR 1.08, 95% CI 0.63-1.83, I(2) 0%).

Cookin? NEW

NAFITHROMYCIN

Claimed to be India's first Indigenous antibiotic.

Officially launched by Union Minister of India in November 2024. Still under review from CDSCO and not yet approved.

A Phase II study evaluated Nafithromycin against Moxifloxacin in patients with Community-Acquired Bacterial Pneumonia. The primary efficacy endpoint, clinical cure, was achieved by 91.9% (83.2 to 97.0) of patients in the Nafithromycin 800 mg (3-day) group, 89% (79.5 to 95.1) in the Nafithromycin 800 mg (5-day) group, and 87% (77.4 to 93.6) in the Moxifloxacin 400 mg (7-day) group.(1)

Non-serious adverse events were reported in 14.86% of patients in the Nafithromycin 800 mg (3-day) group compared to 7.89% in the Moxifloxacin group, with the most common events being gastrointestinal symptoms (vomiting, nausea, diarrhea) and hypertension.(2) There were 2 serious adverse events in Moxifloxacin group and 1 each in

Nafithromycin group however the causality of the adverse/serious adverse events was not available.(2)

- Keterences
- https://www.clinicaltrialsregister.eu/ctr-search/trial/2016-001246-26/results
 https://clinicaltrials.gov/study/NCT02903836?intr-Nafithromycin&rank=4&ta
- https://www.wockhardt.com/wp-content/uploads/2023/12/wockhardt-annonces-successful-completion-of-pivotal-phase-3-pneumonia-study-of-its-macn Ede-architerio-pnftheamwin-wck-4872 ndf

In a Phase III study, a three-day treatment with Nafithromycin achieved a clinical cure rate of 96.7%, compared to 94.5% in the Moxifloxacin arm.(3)

India's First Indigenous Antibioti

Nafithromycin For Resistant Infections

The Phase III study reported no serious adverse events (AEs). All observed AEs were mild, with most deemed unrelated to the study drugs by investigators, except for nausea and gastrointestinal effects.(3)

While the results of the Phase II and Phase III studies have not yet been published, it is claimed that Nafithromycin achieves lung exposure levels eight times higher than Azithromycin, with 10- to 100-fold greater potency against certain respiratory pathogens.(3)

Although Nafithromycin showed higher clinical cure rates as compared to Moxifloxacin with a shorter treatment duration but side-effects were higher in Nafithromycin arm (14.86% vs. 7.89%) in phase II clinical trial. If approved by CDSCO, this indigenous drug could be a major leap in fight against multi-drug resistant pneumonia

Table: Antibiotics according to WHO Essential Medicine List, 2023 including division as per AWaRe classification into "Access, Watch and Reserve" and mechanism of action, Adult and Pediatric dosing Prepared by Dr. Rachna Rohilla , Assistant Professor, Pharmacology, AIIMS Bathinda

Trepared by Dr.				Filannacology, A		1	
Antibiotic	A/W/R	Class and Subclass	Mechanis m	Adult dosing	Pediatric dosing	Optimal effect (PK/PD) if	Comment, if any
Benzathine benzylpenicillin	Access			2.4 million IU (~1.8 g) IM (Only for IM use)	50,000 IU/kg (~37.5 mg/kg) IM single dose in congenital syphilis		Indication is syphilis. The number of doses depends on the stage of the infection
Benzylpenicillin	Access		linas Cell wall synthesis inhibition	4 – 24 million units/day IV in 4-6 divided doses	100,000 – 400,000 units/kg/day IV in 2-4 divided doses	Frequent or continuous infusion (T>MIC)	Only for IV use
Phenoxymethyl penicillin	Access	D		1500 – 4000 mg PO in 3-4 divided doses	50 mg/kg/day PO in 3-4 divided doses		
Procaine benzylpenicillin	Access	synthesi		IM: 1.2 million IU (1.2 g) once daily dose	IM: 50,000 IU (50 mg)/kg once daily dose		Only for IM use
Amoxicillin	Access			divided doses PO: 1500	IV: 100 – 200 mg/kg/day IV in 3-4 divided doses PO: 50 – 100 mg/kg/day PO in 2- 3 divided doses		
Ampicillin	Access			6000 – 8000 mg/day IV in 3-4 divided doses	100 – 200 mg/kg/day IV in 3-4 divided doses		
Cloxacillin	Access	Penicillinas e stable penicillin		IV: 4000 – 12000 mg/day in 4-6 divided doses PO: 2000 mg/day in 4 divided doses	IV: neonates: 50 – 100 mg/kg/day in 2 doses; Children: 100 – 200 mg/kg/day in 4 divided doses PO: 60 mg/kg/day in 4 divided doses		

Cefalexin	Access	1st		1500 mg PO in 3 divided doses	50 mg/kg/day PO in 2 divided doses				
Cefazolin	Access	generation cephalosp orin		6 g IV in 3 divided doses or 2 g single dose for surgical prophylaxis	50 mg/kg/day IV in 2 divided doses or 50 mg/kg single dose for surgical prophylaxis				
Cefuroxime	Watch	2nd generation cephalosp orin		1.5 gm IV as single dose for surgical prophylaxis	50 mg/kg IV as single dose for surgical prophylaxis				
Cefotaxime	Watch		Cell wall synth esis inhibit ion	wall synth esis inhibit	wall synth esis inhibit	wall synth esis inhibit	wall synth esis inhibit	3000 – 8000 mg/day IV in 3-4 divided doses	100 – 200 mg/kg/day IV in 3-4 divided doses (In neonates 100 mg/kg/day in 2 divided doses)
Ceftriaxone	Watch	3rd						synth esis inhibit	synth esis inhibit
Ceftazidime	Watch	generation cephalosp orins		3000 – 6000 mg/day IV in 3-4 divided doses or continuous infusion	100 – 200 mg/kg/day IV in 3-4 divided doses				
Cefixime	Watch			PO: 400 – 800 mg/day in 1-2 divided doses	PO: 10 – 20 mg/kg/day in 1-2 divided doses				

Cefiderocol	Reserve	Sideropho re cephalosp orin	6 gm IV in 3 divided doses		INJ	
Amoxicillin + Clavulanic acid	Access		IV: 3000/600 mg – 6000/600 mg/day in 3 divided doses PO: 1500/375 – 2625/375 mg/day in 3 divided doses	IV: 100/10 - 150/15 mg/kg/day in 3-4 divided doses PO: 50/12.5 - 90/22.5 mg/kg/day in 3-4 divided doses	PO/I NJ	
Piperacillin + Tazobactam	Watch	Beta- lactam combinati on agent	12000/1500 mg – 16000/2000 mg/day IV in 3 divided doses (if extended 4-hour infusion) or 4 doses (if 30- minute infusion)	320/40 mg – 400/50 mg/kg/day in 4 divided doses	INJ	
Ceftazidime + Avibactam	Reserve		6000/1500 mg IV in 3 divided doses	150 mg/kg/day ceftazidime + 37.5 mg/kg/day avibactam IV in 3 divided doses	INJ	
Ceftolozane + Tazobactam	Reserve		3000/1500 mg IV in 3 divided doses	90 mg/kg/day IV in 3 divided doses (max 1.5 g/dose)	INJ	
Meropenem	Watch	Carbapen em	3000 – 6000 mg/day IV in 3 divided doses	60 mg/kg/day IV in 3 divided doses	INJ	
Imipenem + Cilastatin	Watch	Carbapen em	3000 mg IV in 3 divided doses	75 – 100 mg/kg/day IV in 3-4 divided doses	INJ	Avoided in neonates and patients with history of seizures

Meropenem + Vaborabactam	Reserve	Beta-lactam combination agent	6000/6000 mg IV in 3 divided doses		INJ	
Vancomycin	Watch	Glycopeptide	IV: 30 – 40 mg/kg/day in 2-3 divided doses PO: 500 - 2000 mg in 4 divided doses (for C.difficile only)	IV neonates: 30 mg/kg/day in 2 divided doses IV children: 15 mg/kg/day in 3 divided doses PO: 20 – 40 mg/kg/day 4 divided doses	INJ (/P O)	Only gram positives; PO only for C.difficile Therapeutic drug monitoring recommend ed to ensure efficacy
Fosfomycin	Reserve	Fosfomycin	IV: 18 – 24 gm in 3 divided doses	IV: 200 – 400 mg/kg/day in 2-3 divided doses	INJ	
Colistin	Reserve	Polymyxins	IV: 9 million IU CMS loading dose followed by 9 – 12 million IU CMS in 2 divided doses as maintenance dose	IV: 2.5 – 5 mg/kg/day CBA (75,000 – 1,50,000 IU/kg/day CMS) in 2 divided doses	INJ	Only gram negatives
Polymyxin B	Reserve	Polymyxins	2.5 mg/kg (25,000 IU/kg) IV loading dose followed by 3 – 6 mg/kg (30,000 – 60,000 IU/kg) IV in 2 divided doses as maintenance dose	2.5 mg/kg IV loading dose followed by 1.5 – 3 mg/kg/day in 2 divided doses as maintenance dose	INJ	Only gram negatives

Gentamicin	Access			5 -7 mg/kg/day IV single daily dose	7 mg/kg/day IV single daily dose (5 mg/kg/day in 1st week of life)	INJ	Therapeutic drug monitoring is recommended to minimize toxicity							
Amikacin	Access	Aminogly cosides	Prot ein i synt hesi s inhi bitio n	15 mg/kg/day IV single daily dose	15 – 20 mg/kg/day IV single daily dose	INJ	Therapeutic drug monitoring is recommended to minimize toxicity							
Plazomicin	Reserv e			15 mg/kg/dose IV as single daily dose		INJ								
Spectinomycin	Access	Aminocyc litols		ein synt hesi s inhi bitio n	ein synt hesi s inhi bitio n	ein synt hesi s inhi	ein synt hesi s inhi	ein synt hesi s inhi			2000 mg IM single dose		INJ	
Doxycycline	Access	Tetracycli ne							PO: 200 mg in 2 divided doses or 300 mg single dose for cholera	PO: 2 – 4 mg/kg single dose or 300 mg single dose if >45 kg for cholera	PO/ INJ			
Clindamycin	Access	Lincosami de				IV: 1800 – 2700 mg in 3 divided doses PO: 1800 mg in 3 divided doses	IV/PO: 15 mg/kg/day in neonates and 30 mg/kg/day in children in 3 divided doses	PO/ INJ						
Chloramphenicol	Access	Pheniocol		4 gm IV in 4 divided doses	100 mg/kg/day IV in 4 divided doses	PO/ INJ	Use chloramphenicol in children only when no other option is available due to toxicity concerns							
Azithromycin	Watch			PO: 500 – 1000 mg/day in single dose	PO: 10 – 20 mg/kg/day in single dose	PO/ INJ								
Clarithromycin	Watch	Macrolide		IV/PO: 500 – 1000 mg/day in 2 divided doses	PO: 15 mg/kg/day in 2 divided doses	PO/ INJ								

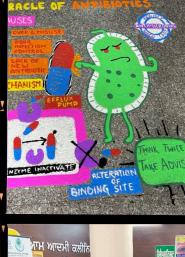
					F		
Linezolid	Reserve	Oxazolinones		IV/PO: 1200 mg in 2 divided doses	IV/PO: 30 mg/kg/day in 3 divided doses beyond 1st week of life or 20 mg/kg/day in 2 divided doses if < 7days	PO/INJ	Activity against Tuberculosis
Metronid azole	Access	Nitroimidazoles		PO/IV: 1500 – 2250 in 3 divided doses	PO/IV: 15 mg/kg/day in 2 divided doses in neonates and 22.5 mg/kg/day in 3 divided doses in children	PO/INJ	
Nitrofura ntoin	Access	Nitrofuran	N u cl c ac id	PO: 200 mg in 2 divided doses (modified release) or 200 mg in 4 divided doses (immediate release)	PO: 4 mg/kg/day In 2 divided doses (modified release) or 4 mg/kg/day in 4 divided doses (immediate release)	PO	Indicated for lower UTI
Ciproflox acin	Watch	Fluoroquinolon e	in hi bi ti o n	IV: 800 – 1200 mg/day in 2-3 divided doses PO: 1000 – 1500 mg/day in 2-3 divided doses	IV/PO: 20 – 30 mg/kg/day in 2 divided doses	PO/INJ	
Trimetho prim + Sulfamet hoxazole	Access	Dihydrofolate reductase inhibitor		PO: 1600/320 mg in 2 divided doses	PO: 40 mg/kg/day SMX + 8 mg/kg/day TMP in 2 divided doses	PO	

World Antimicrobial resistance Awareness Week (WAAW) 2024

Department of Pharmacology and Antimicrobial Stewardship Committee, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab



ASPI



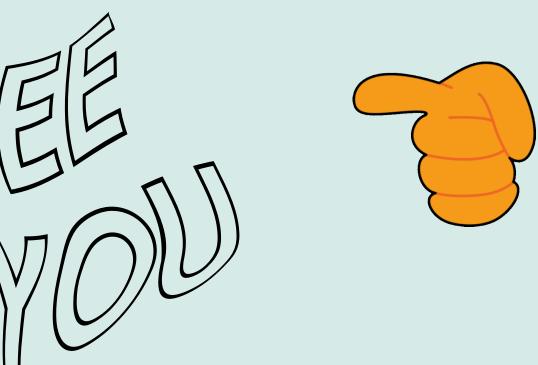
P5 PLUS

C

WAAW 2024 - World AMR Awa

Day 7: Media outreach via newspaper column and Hand hygiene awareness among HA and SA staff of AIIMS Bathinda

AIIMS Bathinda celebrated World AMR Awareness Week (WAAW) 2024: Uniting against Antimicrobial Resistance


ommunity level and as responsible there are some Do's and Don'ts w n adopt in our lives. Never use left-over antibiotics

iotics with others ver share antit cribe antibiotics or unter antibiotics

ek (CME and

AIIMS Bathinda celebrated World AMR Awareness Week (WAAW) 2024: Unitin

SP

At ASPICON 2025 AIIMS Mangalagiri

